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1. Introduction 

Numerical modeling of transport and diffusion, or the analysis of atmospheric effects on the 
performance of sensors, requires wind data with high spatial (10 to 100 meters) and temporal  
(2 to 5 minutes) resolution across a reasonably large (10 x 10 km) domain.  Traditionally, there 
have been two approaches to generate such high resolution wind fields, and both rely on 
computer numerical modeling of the atmosphere.  The engineering and atmospheric sciences 
communities usually simulate the wind field in an urban area by extending their computational 
fluid dynamic (CFD) or large eddy simulation (LES) models for laboratory control 
environmental conditions.  Those models have advantages in that their detailed treatment of 
complex surface morphologies allow for improved simulations of the flow field structure.  
However, LES models are generally not designed to accurately account for the deep atmospheric 
structures that are the major driving force for the small scale flows.  The computational expense 
for this type of model is too large to cover a reasonably sized urban area.  On the other hand, 
atmospheric numerical weather prediction (NWP) models usually attempt to represent a variety 
of natural flow scales and phenomena including turbulence, gravity waves, deep convection, 
fronts, and long waves.  Either by increasing the NWP model resolution directly or alternately by 
nesting a large eddy simulation model within a mesoscale NWP model, one can provide mean 
values and associated turbulence statistics, which are potential solutions for the requirement.  
Unfortunately, it remains impractical for real-time applications in the foreseeable future because 
of the limitations of available computer power.  Besides the huge requirement of computational 
resources, the predictability of the forecast model in microscale remains debatable and is in need 
of further research.  For applications requiring a combination of rapid and accurate results, a 
well-designed diagnostic model, which is exercised at specific times over limited domains, may 
provide a solution.   

One particular type of diagnostic model that satisfies some physical or dynamical constraints is 
explored in this study.  The theoretical basis for this type of model was developed by Sasaki 
(1958; 1970) using variational analysis.  The general variational analysis defines an integral 
function whose solution minimizes the variance of the difference between the observed and 
analyzed variable values, subject to physical constraints.  The physical constraints may be any 
combination of the mass, momentum, and energy conservation equations.  If the physical 
constraints are all three conservation equations, the problem becomes effectively a three-
dimensional variational data assimilation problem.  Obviously, this approach becomes 
increasingly more computationally intensive as constraints are added because one not only has to 
solve the constraint equations but also has to minimize the difference between the observations 
and the results from the prediction model.  If, however, we take mass conservation as the only 
constraint, the problem is greatly simplified.  However, this simplification will also cause the 
model to be unable to simulate the turbulence and surface layer in the flow system.  This 
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question will be addressed in detail in our parameterization of these features in the future 
research. 

There have been many developments of this type of model during the last several decades.  Ratto 
(1996) has provided a recent literature review of mass consistent modeling.  In it, he points out 
that a mass consistent model can provide a performance similar to that of a full dynamical 
simulation model in some specific applications.  Sherman (1978) and Dickerson (1978) have 
applied mass conservation to an analysis of atmospheric flows over complex terrain.  Their 
model uses a local Cartesian coordinate, and the earth’s surface is approximated with a constant 
step in the vertical direction.  The partition of flow into both the vertical and horizontal 
directions is based on a simple empirical coefficient.  Development of other such models by 
Davis, Bunker, and Mutschlecner (1984) and Ross, Smith, Manins, and Fox (1988) employs a 
terrain-following sigma z coordinate system.  Connell (1988) has done extensive testing on 
Ross’s model using observational data, and her results conclude that the model performed 
adequately for the flow over a single mountain.  The above authors attempted to formulate the 
flow partition coefficient in terms of the Froude number.  Kitada, Igarashi, and Owada (1986) 
adopted a similar coordinate system in their model and applied it to a land-sea breeze type wind 
circulation pattern.  Moussiopoulos and Flassak (1986) presented a faster numerical algorithm, 
using a vector computer, to compute the wind field but did not distinguish between the relative 
adjustment in the horizontal and vertical directions.  These models have typically covered 100 x 
100 km domains at horizontal resolutions of 2 to 4 kilometers.  No approach to date has included 
the effect of the detailed surface features (morphology), such as buildings and plant canopies, 
which become important as the resolution is increased.  Cionco (1985) has demonstrated, for two 
dimensional simulations, the effect and impact of surface morphology on the behavior of the 
near-surface flow as resolution is increased.   

The objective in this project is to develop a robust, high-resolution three-dimensional mass 
consistent diagnostic wind model (3DSTAT) which can be applied in real-time simulations 
(Mercurio et al., 2001).  This model has to be both reasonably accurate in representing the flow 
physics and computationally efficient.  The basic framework of the model is discussed in this 
document.  The planned treatment of the surface roughness layer is described in section 2, the 
numerical implementation of the model is discussed in section 3, and several idealized tests of 
the prototype of the model are presented in section 4.  The detailed treatment of the surface layer, 
including the parameterizations of the turbulent surface layer, the flow in plant canopies, the 
turbulent wakes by the bluff building blocks, and the atmospheric stability effect, will be 
implemented and described in the future as on-going processes of the model development. 
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2. Model Description 

2.1 Variational Formulation 

The model is based on the mass conservation principle, which eliminates the divergence in a 
flow field.  That is, given a limited number of observations or a coarsely modeled wind field 
over complex terrain, the wind field is physically interpolated in such way that mass 
conservation is satisfied.  Mathematically, the problem is to minimize the functional 

dxdydz
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in which x, y are the horizontal coordinates, z the vertical coordinate, u0, v0, w0 the initial 
observed velocity components, u, v, w the corrected velocity components, λ the Lagrange 
multiplier, and β1, β2 Gauss precision moduli, which are the wind vector partitioning factors in 
the horizontal and vertical directions, respectively.  The Euler-Lagrange equations corresponding 
to equation (1) are 
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subject to the boundary conditions 

 ,0)( 0 =− uuλ     ,0)( 0 =− vvλ    and  0)( 0 =− wwλ  (3) 

This corresponds to either setting λ = 0 (“flow through” free boundaries) or requiring the normal 
component of the flow at the boundary to remain unchanged after the adjustment. 

Equations 2 can be cast into an equation for the Lagrange multiplier, λ, in terms of the initial 
conditions, by differentiating the equations for u, v, and w, and substituting the results into the 
continuity equation to give a Poisson equation 4.  The β1 and β2 values are assumed to be 
constants throughout the small domain.   
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Without altering their physical meaning, let α = (β1/β2) and β1 = 1 so that α represents the 
adjustment of the vertical component relative to the horizontal components (equation 5).  
Determination of the α value is a complex operation and it is discussed in detail in section 2.4. 
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The λ value in equation 5 can be solved numerically by setting the boundary conditions on all 
facets of the computation domain.  The u, v, w wind components then can be computed from 
equation 2 with the λ value solved from equation 5.  The iterative convergence will be the high 
resolution diagnostic solution for u, v, w for the given boundary and coarse initial conditions 
(observations).  At the lateral boundaries, λ is set equal to zero to allow “flow through” in the 
flow adjustment.  At the bottom of the domain, “no-flow-through” conditions can be satisfied by 
having the normal derivative vanish, i.e., ∂λ/∂z = 0.   

2.2 Vertical Coordinate 

In this model, a local Cartesian coordinate (x,y,z) has been chosen for the development and 
testing.  The reason is that the objective of the model is to simulate microscale wind flows (10 to 
100 m) in complex terrain or around buildings where the computational domain and flow scale 
are small.  In the terrain-following coordinate system, the transformation Jacobian matrix 
requires the derivative between the coordinate variables to exist in a mathematically continuous 
(smooth) surface.  The discontinuity of sharp corners or vertical walls will cause a singularity in 
some element of the Jacobian matrix.  The sigma z terrain-following coordinate must limit the 
slope to be less than one vertical grid increment per horizontal increment and cannot represent 
severe terrain or city buildings.  In this prototype of the model, we use a simple Cartesian 
coordinate.  A variable step vertical coordinate following Tripoli, Williamson, and Garvey 
(2003) will be implemented in the future to better represent the topography.  This vertical 
coordinate system represents a lower boundary by setting the first layer depth to be variable but 
regularly spaced above.  The terrain surface will be described almost exactly as prescribed by the 
model horizontal resolution, limited by the resolution of the input terrain data.  The idea of the 
variable vertical step grid is illustrated in figure 1.  Consider the top of the first building block 1, 
where the top of the building is a little greater than Z = 2 but less than Z = 2.5.  The constant 
vertical step grid will approximate the building top at Z = 2, but the variable step coordinate will 
put the building height at a level indicated by placing a variable ∆Z3 at this first layer.   
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Figure 1.  A schematic illustration of variable step vertical coordinate. 

2.3 Treatment of the Turbulent Surface Layer  

The wind near the earth’s surface is highly turbulent and chaotic.  Obviously, the mass consistent 
model will not be able to resolve this flow.  The mean surface layer wind characteristics have to 
be parameterized according to the observational data.  For the flow in and just above plant 
canopies, the vertical wind profile proposed by Cionco (1965; 1985) will be used.  The mean 
wind profile model has been verified through various field experiments (Cionco, 1985; 1999).  
The simplicity of this relationship allows a straightforward coupling to the 3DSTAT model.  The 
turbulence parameters, such as the momentum and heat fluxes and the standard deviation of wind 
speed variation, need to be parameterized according to the various field measurements.  The flow 
around and above the building blocks in an urban area also requires special treatment.  There are 
some wind tunnel data (Bossert, Linn, Reisner, Smith, and Winterkamp, 1998; Kastner-Klein, 
Rotach, Borwn, Fedorovich, and Lawson, 2000; Brown, Lawson, Descroiz, and Lee, 2000) 
showing the turbulent wakes and boundary separations at the roof top and sidewalls of the 
buildings.  Scarce data are available for actual atmospheric conditions.  Planned experiments 
such as Joint Urban (2003) will supply some data for realistic modeling of the urban wind flow.  
Since coupling of the turbulent surface layer flow with the upper level flow is a complex topic, a 
lot of detailed research and study have to be done at this stage.  The idea of parameterizing the 
flow in regions where the model solution is difficult to achieve (or requires very fine resolution) 
is not novel.  This treatment is found in many models, such as boundary layer parameterizations 
in numerical weather prediction models or logarithmic profile parameterizations in some CFD 
simulations. 
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2.4 Partitioning the Flow Using the Richardson Number 

The α value in equation 5 defines the flow partitioning between horizontal and vertical motions.  
The value of α governs the adjustment made in the vertical component relative to the horizontal 
components.  In early mass-consistent models, the value was assumed to be a small constant over 
the entire domain (Sherman, 1978; Davis et al., 1984) and the value was determined subjectively.  
Snyder, Thompson, Eskridge, Lawson, Castro, Lee, Hunt, and Ogawa (1985) and Ross, Smith, 
Manins, and Fox (1988) have related the α value with a hill Froude number to account for the 
atmospheric stability.  Recently, Mercurio, Williamson, Chang, Huynh, Cionco, and Garvey 
(2001) have proposed relating the flow separation to the bulk Richardson number.  This 
partitioning argument probably makes more sense, considering that the model proposed here is 
designed to simulate the wind at an even smaller scale than that of the single hill treated by 
Snyder, Thompson, Eskridge, Lawson, Castro, Lee, Hunt, and Ogawa, (1985) and Ross, Smith, 
Manins, and Fox (1988).  Also, the α value will be larger as the flow scale becomes smaller, 
since the vertical motion in the microscale flow can become comparable to the horizontal 
motion.  We defer this subject to the next stage of the model development. 

 

3. Numerical Methods 

3.1 Finite Difference Discretization 

Equation 5 is discretized by a standard 7-point method with second order accuracy in all three 
spatial directions: 
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in which f0  is the divergence of the wind field in the last iteration (or the initial divergence in 
case of the first iteration), using a central difference in space 
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The “flow-through” boundary conditions are set by letting λ = 0, while the “no-flow-through” 
boundary conditions at the terrain surface and building walls set the normal derivative at the 
point to zero with a three-point forward (equation 8) and backward difference (equation 9) with 
second order accuracy. 
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Depending on the direction of the normal to the boundary, the appropriate normal direction is 
denoted by n, and the corresponding index is m.  The adjusted wind field is then computed from 
the discretized equations of (2) with the α value: 
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The convergence to the final values of u, v, w is achieved by the iteration of equations 6 to 10 
with a prescribed error tolerance.  The largest computational load (99%) arises in solving the 
three-dimensional Poisson equation to determine the λ values.  The multigrid method described 
in the next sub-section is employed to accelerate the computation of the Poisson equation. 

3.2 Multigrid Method 

The discretization of the Poisson equation in a Cartesian grid leads to a system of linear 
difference equations.  This equation set is non-symmetric, diagonally dominant, and locally 
dependent on the terrain.  Since the equation set is a very large system (e.g., 1293 x 1293 matrix 
for a 129 x 129 x 129 grid), an iterative method must be applied to solve the equation set.  The 
over-relaxation iteration method was initially applied for this purpose.  However, the over-
relaxation method is quite slow to converge.  Multigrid algorithms are effective and fast in the 
solution of elliptic equations, and they have recently found many other applications.  In many 
cases, the multigrid method is considered as the optimal method to solve the elliptical differential 
equation.   

In the tutorial by Briggs, Henson, and McCormick (2000), the multigrid method was introduced 
as a means to accelerate the convergence of the relaxation procedure.  Many relaxation schemes 
have a smoothing property, so that the high frequency oscillatory modes of the error are 
eliminated effectively, but lower frequency smooth modes are dampened only slowly.  The 
smoothness of the error is relative to the computational grid size, and a smooth mode in a fine 
grid appears to be high frequency to a coarse grid.  The multigrid method takes advantage of this 
property to accelerate the convergence by dealing with the low frequency error in coarser grids.  
The multigrid method uses coarser grids recursively to relax the smooth mode error and 
interpolate back to the finer grid.  Coarse grids are also used to compute an improved initial 
guess for the fine grid relaxation.  The full multigrid method (FMG) applied in this numerical 
model can be described as follows: 
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In order to describe the FMG algorithm clearly, a two-grid correction scheme is described, first 
as one-dimensional.  The three-dimensional multigrid method is then a simple extension of the 
one dimensional problem.  The FMG V-cycle scheme is used here to solve the finite difference 
equation Lλ = f at grid size h= ∆x, where L is a one-dimension Poisson operator (second 
derivative).  An appropriate two-grid correction scheme is 

1. Relax γ1 times on Lh λh = f h on fine grid (∆x = h) with a given initial guess µh. 

2. Compute the fine grid residual rh = hhh Lf µ−  and average it to the coarse grid. 

3. Solve the residual equation L2he2h = r2h for e2h on coarse grid (∆x = 2h). 

4. Interpolate the coarse grid error to the fine grid and then correct the fine grid 
approximation.  hhh e+← µµ . 

5. Relax γ2 times on Lh λh = f h on the fine grid with initial guess µh 

With the two-grid method in mind, it is a short step to the multigrid method.  Instead of solving 
the coarse grid residual equation exactly, we can get an approximate solution of it by introducing 
an even coarser grid and using the two-grid method.  This idea can be applied recursively down 
to some coarsest grid, where the solution of the error can be found easily by direct matrix 
inversion or iteration.  The iteration of a multigrid method from finest grid to coarsest grid and 
back to finest grid again is called a cycle.  If the two-grid iteration at each intermediate grid is 
executed once only, it is called a V cycle. 

The FMG V-cycle is a further extension of the V cycle described before.  Instead of starting with 
an arbitrary approximation on the finest grid, which is usually a poor guess, we start to solve the 
liner system at the coarsest grid and use that solution to provide a better guess for the initial field 
on the next finer grid.  This operation is conducted to the finest grid for a good starting guess of 
the solution at each grid level.  This nested iteration to find the initial guess can greatly increase 
the efficiency of the multigrid method. 

The interpolation method applied in the three-dimensional FMG method is a simple trilinear 
interpolation.  The corresponding averaging method is a fully weighted average.  With three-
dimensional stencil notation, the trilinear interpolation (operator P) from coarse grid to fine grid 
can be described in the following equations (Wesseling, 1992): 
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in which e1, e2, and e3 are the unit directional vectors, defined as 

 e1 = (1,0,0),    e2 = (0,1,0),     e3 = (0,0,1) (12) 

The restriction or averaging operator (R) is an adjoint of the operator P, which is a fully weighted 
average in the neighboring points.  The weighting factors for the 27 points in the three-
dimensional stencil are expressed as three slices of matrix:  
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in which R(0) is the center slice that passes through the center point, and R(1) and R(-1) are the first 
and third slices. 

The trilinear interpolation and the fully weighted average preserve symmetry but are more 
expensive compared to other operators such as simple interpolation and simple injecting.  A 
detailed description of the interpolation and averaging operators is presented in Wesseling 
(1992).   

The relaxation method to solve the linear system equation is the red-black Gauss-Seidel method.  
The Gauss-Seidel scheme is  

 ∑
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−−=
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ij
j

ijij
ii

i fL
L 1

)(1 λλ                          Ni ,...,1=  (14) 

in which the N is the number of  grid  points in a specific grid.  The grid points are ordered in a  
checker board fashion in the alternating red and black order, and the revising of the red point 
only uses values at the black point, and vice versa.  The red and black points are completely 
decoupled and the revising of both groups may be done in parallel.  This property is certainly 
beneficial on parallel computers (Press, Flannery, Teukolsky, and Vetterling, 1992).  The 
convergence theory for the multigrid method is beyond the scope of this report, and the reader is 
referred to Wesseling (1992) and Briggs, Henson, and McCormick (2000). 

The interpolation, averaging, and relaxation operator use exactly the same subprogram at every 
grid level.  The numerical routines are implemented via a standard FORTRAN (Formula 
Translator) 90 code structure.  The dynamical memory allocation and the recursive subroutine 
are used to improve the efficiency of the numerical code.   
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4. Initial Test Results of the Model 

4.1 Test With the Potential Flow Solutions 

The model formulation and coding require very rigorous testing to detect potential coding errors.  
A logical first test is to compare with analytical solutions if available.  The model formulation of 
the minimization of the functions resulted in a Poisson equation 5 with respect to the Lagrange 
multiplier λ.  By letting α = 1 (the wind is adjusted equally in the vertical and horizontal 
directions), equation 5 can rewritten in vector form:  

 0
2 2 V

r
•∇−=∇ λ  (15) 

The λ represents a velocity potential for non-viscous, irrotational flow if the initial wind 
divergence ∇ • 0V

r
 = 0.  This condition is satisfied for the uniform background wind.  Thus, a 

mass consistent numerical model simulation of an initially uniform wind flow over a terrain is 
equivalent to the potential flow solution.  The potential flow can be expressed in a more general 
sense (Ross, Smith, Manins, and Fox, 1988): If the initial wind =0V

r
(u0, v0, w0) can be separated 

as 

 u0 = u0(x),     v0 = v0(y)   and    w0 = w0(z) (16) 

then the final wind satisfies a velocity potential Φ 

 ,
x

u
∂
Φ∂=       

y
v

∂
Φ∂= ,        

z
w

∂
Φ∂=  (17) 

in which 

 ∫ ∫ ∫ +++=Φ
2000
λdzwdyvdxu  . (18) 

We then have an equation that is identical with (15) 

 0
2
1 2

0
2 =∇+•∇=Φ∇ λV

r
 (19) 

There are some analytical solutions for the potential flow around simple two-dimensional or 
three-dimensional geometrical objects such as a cylinder, sphere, or ellipse (Milne-Thompson, 
1960).  However, for complex geometrical obstacles, analytical solutions are not possible and 
numerical simulation is the preferred method.  Nevertheless, the simple geometry analytical 
solutions are useful for the testing of the numerical model.  The following are some model tests 
compared to some simple potential flow analytical solutions.  The potential flow theory is a good 
approximation for the flow over an obstacle in the neutral condition and when the Froude 



 11

number (Fr) is much greater than 1, except in the region of turbulent wake in the lee side of the 
flow.  The Froude number is defined as 

 
Nh
VFr
∞=  (20) 

in which ∞V  is the uniform wind speed approaching the hill, h is the height of the hill, and 

dz
dgN ρ

ρ
−= , the Brunt-Väisälä frequency.  The condition of 1>>rF  can be found in the 

condition when (1) there is a homogenous and well-mixed condition ( )0→N  in which the 
Reynolds number is usually large (Baines, 1995), or (2) a small hill height (h), given the flow is 
stratified.  The parameterization of the lee side turbulence will be studied in detail in the next 
stage of the research.  The potential flow theory is to be compared here only for the purpose of 
checking the computational methods and the flow upstream and above the turbulence wake. 

a. Potential Flow Over a Hemisphere  

A simple hemisphere with a radius of 2.5 km is used for this case.  The potential flow analytical 
solution for this case is an axis symmetric flow in a polar coordinate (r,θ) (Milne-Thompson, 
1960): 

 

)
2

1(sin

)1(cos

3

3

3

3

a
rVV

a
rVV r

+−=

−=

∞

∞

θ

θ

θ

 (21) 

in which rV  and θV  are the wind velocity components normal and tangential to the hemisphere 
surface, respectively, θ is the elevation angle of the line normal to the point, ∞V  is the uniform 
prescribed wind speed, a is the distance from the hemisphere center, and r is the radius of the 
hemisphere.  The potential solution is simulated with the 3DSTAT model on a 10-km x 10-km x 
10-km domain.  The grid number is 129 x 129 x 129 and dx = dy = dz = 77.5m.  The radius of 
the hemisphere is 2.5 km and the uniform wind speed is 10 m/s.  The comparison of the 
analytical solution and the numerical solution is plotted in figure 2.  The left panel is the 
analytical solution and the right panel is the 3DSTAT simulation.  In both solutions, the top 
panel displays the horizontal cross section at z = 1.55 km and the bottom panels shows the 
vertical cross section at y = 5 km.  Overall, the numerical simulation captured the potential flow 
solution and showed the wind turning, climbing, accelerating on the mountain top, and 
approaching zero at the stagnation point.   
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Figure 2.  Comparison of the potential flow analytical solution (left panel figures) with the  
numerical model solution (right panel figures).  (The top panels are the horizontal  
cross sections at z = 1.55 km.  The bottom panels are the vertical cross sections at  
y = 5 km.) 

b. Potential Flow Over Two-Dimensional Ridges 

There are potential flow solutions for many two-dimensional geometries.  Two have been chosen 
for the purpose of testing the model.  The flow over the half cylinder and the flow over a two-
dimensional “Witch-of-Agnesi” (representing long ridges in the y direction), are presented here.  
An important feature for stratified flow over those types of ridges (Queney, 1948; Long, 1953) 
and over a three-dimensional Witch-of-Agnesi (Smith, 1989) is that solutions based on linear 
perturbation theory show gravity waves generating along the lee side of the ridges for large 
Froude numbers.  The diagnostic model presented here will not show this type of waves because 
it does not address momentum conservation.  However, for a small obstacle or for the well-
mixed atmospheric condition, the potential flow is a valid approximation except in the a flow 
separation region such as lee wake.  Figure 3 compares the potential flow analytical solutions 
(Milne-Thompson, 1960; Queney, 1948) and the 3DSTAT simulation.  The top panel is for the 
flow over a half cylinder and the bottom panel for the flow over the two-dimensional Witch-of-
Agnesi ridge.  The streamlines in both simulations match the analytical solution reasonably well.  
However, the model simulations have some differences near the surface of these ridges.   
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Figure 3.  Streamlines of flow around infinite long half cylinder ridge (top panel); streamlines  
of flow over a 2-D Witch-of-Agnesi ridge (bottom panel).   

4.2 Flow Around and Over Building Blocks 

Wind flow around building blocks or building canyons is a very complex problem.  There have 
been a number of wind tunnel studies and reviews of wind flow around simple obstacles (Hunt, 
Abell, Peterka, and Woo, 1978) or groups of building blocks (Bossert, Linn, Reisner, Smith, and 
Winterkamp 1998; Kastner-Klein, Rotach, Brown, Fedorovich, and Lawson 2000; Brown, 
Lawson, Descroiz, and Lee, 2000).  For an isolated cubical obstacle, Hunt, Abell, Peterka, and 
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Woo, (1978) showed that several areas in the immediate vicinity of the obstacle have re-
circulations and higher turbulent intensities because of the steep sides and sharp corners  
(figure 4).  On the central plane of symmetry of fluid flow past a cuboid there are the upstream 
re-circulation region, the roof-separated flow region, and the main wake with reversed flow on 
the lee side.  At the side walls, there are also flow separations.  Brown, Lawson, Descroiz, and 
Lee (2000) showed that when a wind flowed perpendicularly over a seven-building array, the 
flow separated at the top of the first building but not over the remaining downstream buildings.  
The flow at the surface was nearly identical in all street canyons, where there was a re-
circulation region with a strong reversed flow at 0.6 building height.   

Upstream recirculation Roof  separated                         Wake circulation 
                  Region                                                   region                                             region 
                    

Side wall separated  
                                         Flow region 

 

Figure 4.  A schematic graph shows the mean flow pattern over and around a wall-mounted box. 

Figure 5 shows the 3DSTAT simulation (top panel) of the flow over three building blocks 
compared with the wind tunnel results.  Obviously, we do not expect the 3DSTAT model to 
simulate the canyon vortex and the boundary layer separation at the top of the first building 
because the model does not contain the momentum conservation.  The flow outside these 
regions, which can be approximated by the potential flow theory (Baines, 1995), is similar to the 
wind tunnel results.  The wake area and the flow separation area have to be parameterized in 
further model development.  Figure 6 shows another 3DSTAT solution for the wind flow around 
and above a group of five buildings.  The first two buildings on the left (see the top panel) are  
13 meters high, while the others are 8 meters high.  The streamlines show that the 3DSTAT 
simulation captured the expected flow around the buildings (top panel) and the building blocking 
effects.  The bottom panel shows the flow over the vertical cross section at y = 30m.  The wind at 
the top building also shows acceleration.  However, the wakes at the lee side of the buildings are 
not simulated because momentum conservation is not imposed. 
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Figure 5.  3DSTAT simulation of wind flow around and over 3-D building blocks.  (The top panel  
is a horizontal cross section at z = 5m, and the bottom panel is a vertical cross section at  
y = 30m.) 
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Figure 6.  Flow over a 3-D block array.  (3DSTAT simulation (top panel) and the wind tunnel data (bottom 
panel, U.S. EPA)).   

4.3 Computational Efficiency of the Model 

The multigrid method applied in the computation very much improves the computational 
efficiency.  Before implementation of the multigrid method, we developed a test version of the 
model use a simple red-black (RB) Gauss-Seidel over-relaxation method to solve the Poisson 
equation.  Table 1 lists the control processing unit (CPU) times required for the test cases with 
both versions of the model.  The testing was done on a two-processor 2-GHz Pentium 4 Linux 
Dell computer.  Basically, this version of the model takes about 20 to 30 times more CPU time to 
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run, compared with the latest model version implemented with the multigrid model (depending 
on the complexity of the underlying terrain).  Another advantage of the multigrid method is that 
the computation time is not proportionally increased as the terrain surface becomes more 
complex.  Indeed, test case 2 over case 4 only showed about a 1.5-minute CPU time increase in 
the multigrid version model, while it had a 2-hour increase of CPU time with the simple RB 
Gauss-Seidel over-relaxation.  We have tested this code for scalability for multiprocessor 
computers using a simple OpenMP compiling option.  The results showed that the code scales 
fairly well up to four processors with about a 1.8 time acceleration.  Indeed, the RB Gauss-Seidel 
relaxation has very good properties when the red and black points are decoupled so that parallel 
processing can be easily applied. 

Table 1.  Comparison of CPU time (minutes) with different numerical methods. 

Test Cases Topographies Simple RB 
Gauss-Seidel 

method 

Multigrid method 

1 Hemisphere (3D) 124 6 

2 Half-cylinder (2D) 119 6.4 

3 Witch-of-Agnesi (2D) 120 7.1 

4 Building array (2D) 218 7.5 

5 Five buildings  (3D) 207 7.8 

 

5.  Summary and Conclusions 

This document describes a prototype high resolution, three-dimensional, computationally 
efficient, diagnostic model for flow over complex terrain with a mass-consistent approach.  The 
differences between the current model and similar approaches are in the vertical coordinate, the 
lower boundary conditions, and the choice of numerical method.  This model will use a step 
vertical coordinate which is better suited for very steep topography and will include the effects of 
not only topography but also small surface features such as trees and buildings on the overall 
flow.  The numerical implementation takes advantage of a multigrid method which greatly 
improves the computation speed.  The framework of the model and associated implementations 
have been described here, several preliminary test cases for the model have been demonstrated, 
and deficiencies of the model have been addressed.  The proposed parameterization of the 
turbulent surface layer and the flow partition will be performed in our future research with field 
observation data. 
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